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EXECUTIVE SUMMARY

Historically, nuclear power plants have operated predominantly at or near
full power, meaning thanost of the data collected are in this operating regime.
Thereforedatadriven anomaly detection methaiifsat are developed using this
datacan perform welat full power operations his presents a challenge when
the power dropsréferred to aa transient) and may resultfedse alarmslue to
the lack othistoricaldataat those new power levelShe current approach to
handling this challenge is to tutine anomaly detection algorithroff during
transientsgausing missed detectian

The objective of this effort is to develdatadrivenanomaly detection
methods that can extend to transient conditiSpgcifically, he research
hypothesis tested is thanomaly detection methods canrbedified and used
during the datgoor transient conditions compared with baseline methsed
in normal operation conditionin the context of datdriven approaches, this
means that the methodsetrainedon a mix of predominantly full power data
and some sparse transigotverdata(collectively called the training dategnd
tested on exclusively transient power dai@led the testing datajvhile the
objective here focuses on full power and transient power conslijtthe problem
can be viewed more broadly as any situation where there are ample data for some
condition but limited data for another similar condition.

Within anomaly detection, this study focuses on two common types of
approaches: predictidmasedandfeaturebasedPredictionbased methods often
rely on selfsupervisedearning, wherea subset ofhe data are used to predict
another partenabing learning tdill in thegaps. In this effort, this is performed
by either withholdingsome datdrom the complete datasahd predicting that
withheld dataor compressing theompletedata to some smaller dimensiand
using the compressed data to predict the full.da#dection is then based on
prediction error between the real measurement and prediatiuchfor well-
trained models ismall during normal operations and larger during anomalies.

This effort implemented three predictitmased approaches to solve the
transient problem. First, the covariate shift approacisés] which assumes there
is ashift in the data distribution from the training data to the testing data, and the
method tries to compensate for that sl8#condthis effort developed a new
approach called the multiple models approach that calculates two isolated
prediction modeld one for all correlations except power and one for correlations
just from powed and combines thenThis is an example & transfer learning
approach, which separatiém® trainingdata into an abundant source dat#fse
power datapnd a sparse target daét(transient power datal\ssuming the
source and target datasets share some features or propertesdgis to
transfer knowledge learned from the source dataset to the target dataset. Third,
anothertransfer learningpproachased on autoencedmodelds testedcalled
the frozen layers approadh this approach, some of theodelweightstrained
usingthe source dataset are fixed (frozemdthe target dataset is thaeed to
fine-tunethe rest of theveights.In addition to these three aaches that
address the transient problem, this effort also implemented baseline approaches
that use predictiotased models without accounting for timeited amount of
transientdata These baseline approaches were isedomparing against other
methods.



In contrast to predictichhased methods, featdbased methods try to directly
extract features that are small during normal operations and larger during
anomalies. This effodevelopedne featurebased approach thases principal
component analysis (PCA) calculate the dominant features (i.e., those dhat
constantly varying andonsequentlyvould notmake good anomaly detection
features) for both full power and transient data separately, combines them to
extrad¢ the dominansystemfeatures, and then finds the null space features (i.e.,
those that should tmmallduring normal operations) to be used for anomaly
detection.This method is called the combined null space apprdaké the
predictiorbased methodsimilar baseline approache&reimplemented for
comparison.

To evaluate methods in a controlled environment, synthetic data generators
were created and used. These data generators were based omapsigmper
(SMD) systems commonly found in mechanieagineering referenceshe full
and transient power conditiomgretranslated to the SMD simulatby having
ample data for an SMD system with one mass held fixed, but the rest of the
masses can move freelya{led the base operating mgdand limiteddata for the
same system but with all masses allowed to move frealie@ the transient
operating modg respectivelyTheinitial methods exploratioshowedhat the
methods were extremely sensitive to nonlinearity. To make this assessment
broader, theonlinearity of the data was quantified, dwath linear and nonlinear
versions of thenethods were tested on data of varying nonlinearity.

Starting with linear datasets and linear anomaly detection mettneds
methods were implemented on the SMD dataseid the resultshoweda
significant difference in anomaly detectiparformancdetween theleveloped
methods and baseline methoBer particularly datsparse applications, any of
the covariate shift, multiple models, BCA based methods (baseline or
combined null space) providedstrong and comparable performance with very
limited transient data.

By contrast, nonlinear methods warot well suited to the nonlinear transient
problem without significant amounts of data; however, the linear methods
applied to the nonlinear datasstowedsome succes his implies thateven
though the overall dynamics of the SMD datasets are namitteere must be
some linear patterns withthe datahat the methods are recognizing and
learning.These patterns still hold when transferring froaseto transient
operatingdata.ln addition, it appears the feattbased methods performed better
thanthe predictioAbased methods on these datasets when given very small
amounts of transient data, although thilvantage was not observasimore data
were addedOne possible explanation for this is that the methods are finding just
the features that atimear and ignoring the other effects, while the predietion
based methods may not be able to extract just the linear features as accurately.

Combining all of this, it appears thé&tbr linear datasets, the transient
problem is solvable and multiple methods can achieve good results. For nonlinear
datasets, the transient problem is much more difficult famdrery limited
transient datasets, may only sdvablewhen some linear pa&ttns exist that can
be extracted.
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EXTENDING DATA-DRIVEN ANOMALY DETECTION
METHODS TO TRANSIENT POWER CONDITIONS IN
NUCLEAR POWER PLANTS

1. INTRODUCTION

The current approach for detecting and responding to process anomalies in nuclear power plants
(NPPs) is primarily reactive in nature. This means plant operators do not searchimifsrriesprocess
data for subtle signs of anomalies but wait untitrakaare generated liye anomalieonce they become
significant enough to exceed some predefined threshold. However, a proactive approach using automated
anomaly detection tools couttibtectsubtle signs of anomalies befdheyescalate into unexpected
equipment failureghereby afforthg the plantadditional lead timén whichto act Figurel). Thiswould
introduce significant cost savings to the plant.

— EquipmentCondition/OverTime)
" - - Mo
' 772\ 72\ ((/ N\
A\ A\ A\
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Operation (normal wear and tear) (accelerated wear and tear) Indication
Timeto = . - -
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Preventative Operator
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Maintenance Rounds

Failure'PreventioniStrategies

Figurel. Equipment condition stages and strategies to prevent equipment failure.

To aid the nuclear power industry, the U.S. Department of Energy Light WatetoR&astainability
program has been investigating machine learning (ML) methods for automated anomaly dedsetibn
ontime-series data. This has included studiesdut¢ed on NPP test casel;[studies comparing and
outlining when to use empirical, dadaiven, and hybrid model]; studies investigating the
incorporation of sparsely labeled known anomalous events inemthrealydetection methods3[; and
studies on methods to identify the root causes of anomdlidddny of these studies have focused on
using datedriven and ML methds due to theianalyticalpower, scalability, and lack of required
modeling investmeniThose studies resulted in methalatare part of anultistage approach to detect
anomalies with minimal false positivésigure?2).

Historically, NPPshave operated predominantly at or near full power. As a result, existing archived
data that could be used for training ML models will contain predominantly full powemadesaingthat
datadriven anomaly detection methods can likely perform well at full power operafibisspresents a
challenge when the power dropsférred to as transient) and may result in false alarms due to the lack
of historicaldataat those new power levelShe current approach to handling this challenge is tothgrn
anomaly detection algorithnegf during transients when the power falls below somediold. This
would prevent false alarms durinigansientsbutthis also makes it impossible to use the algorithms to
detect anomalies during these periods.
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Figure2. Methodsdeveloped to enhance anomaly detection while minimitafsg alarms

Because power plants could operate at reduced power levels for extendeslgidiiod, he
objective of this effort is tdevelopdatadrivenanomaly detectiomethodghat can extend twansient
conditions.Specifically, he research hypleesis testetiereis that anomaly detection methackn be
modified and used during the dataor transient conditions compared with baseline methods used in
normal operation conditions. In the context of ddti@en approaches, this means that the metlaoe
trained on a mix of predominantly full power data and some sparse transient power data (collectively
called the training data), and tested on exclusively transient power data (called the testiighilaté)e
objectiveherefocuses on fulandtransient power conditions, the problem carnvievedmore broadlyas
any situation wherthere areampledata for some condition but limited data for another similar condition.

Within anomaly detection, this study focuses on two common types of approaches: prédstidn
and featurdased.

1.1 Prediction -Based Methods

Predictionbased methods often rely on sslfpervisedearning,wherea subset othe data are used
to predict anther parf enabling learning to fill in the gapk this effort, this is performed by either
withholding some data from the complete dataset and predicting that withheld data or compressing the
complete data to some smaller dimension and using the caagrdata to predict the full da@etection
is thenbased orthe prediction error between the real measurement and prediction, which should be small
during normal operations and larger during anomalies. A common exafrpleredictiorbased anomaly
detecion algorithminvolves usingan autoencoder, in which the original data is compressed to some
reduced dimension (often callediaéent spaceand then reconstructeDuring training, the compression
and reconstruction moddksarn the underlying pattertisat correlate theensor measuremersring
normal conditionsWhen those underlying patterns break, the reconstruction error will be large, and an
anomaly is declared.

This effort implemented three predictitmased approachesaatend predictiofbasecanomaly
detection method® account for the limitetkansientdata The first approaclks to treat it as a covariate
shift problem(or sometimes referred to amsbalanced regressignjescribed in Sectioh.2.2 In the
covariate shift problem, there is a shift in the data distribitmmn the training datéo the testing data
distributiors (Figure3). Approaches to addreise covariate shifproblem focus on synthetically altering
thetrainingdatadistribution These approaches include tools to weight the samples when training models
[5, 6] and tools to resample the available d&ta8], both of which aim to approximate a distribution
closer to the desiredistribution In the context of this effort, thisould result inweighting transient
training data higher than full power training dasaresampling to add additional transient training data
instancesOne advantage to these apgmbes is that they can be combined with previously developed
anomaly detection algorithmisecauseheyfocus on data samplintaking advantage of past work.
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Figure3. lllustration of the covariate shift problem, where thered#farence between the training and
testing data distributions.

Second, a new approach called the multiple models approach was developed that calculates two
isolated prediction modeisone for all correlations except power and one for correlations just from
powe® and combines theifSection4.2.3. This is an example of a transfer learning approach, which
separates the training data into an abundant source datdgsd\{fer data) and a sparse target dataset
(transient power data). Assuming the source and target datasets share some features or properties, the idea
is to transfer knowledge learned from the source dataset to be used with the targeflti@tasetriag
shift and multiple models approaches are agnostic to what type of prediction model is used, so this effort
used the leavenevariableout (LOVO) model (Sectiof.2for the linear version and Secti@rBfor the
nonlinear version)].

The third approactvas thefrozen layers approaalsing autoencodgrwhich isanother example of
transfer learningSection4.2.4). In this approach, some of the model weights trained using the source
dataset are fixed (frozergnd the target dataset is then used totiime the rest of the weighig]. In this
way, the autoencoder can learn features from the source data and thanditreem to the dynamics of
the target datal his approach used the autoencaatediction model (Sectiod.4).

In addition to the extension methods, this effortlenpented baseline approaches to compare the
extension methods {&ectiond.2.]). The baseline approaches use prediebased models without
implementing extensiorfsr the transient problem.

This review also considerediather approacthat treatedhe problenmas a tme-varying regression
problem. In other words, the transients are simply the system dynamics naturally changing over time, and
this process can be captured using tiragying anomaly detection models. This problem has been
addressed using a windowed apmtothat trains models online. This means a past window of data is
used to train a model to predict the next window of data, and these windows slide through time as more
data is collectedHigure4) [10, 11]. Like the covariate shift prdéé&m, an advantage to this approach is that
it can build on or even directly use previously developed anomaly detection methods. However, it also
has some potential limitations. First, it does not consider the entire set of available data, which could
resut in additional spurious false alarms from a lack of training data. Second, it is constantly updating the
training data, so it would likely only detect anomalies that result in abrupt changes in process variables.



For slowly changing anomalies, the anomualgignal may be learned as normal before it becomes large
enough to flag as an anomaue to theelimitations, the timevarying approach was not implemented.

C_-1 Training [ Testing

Measurement

Figure4. lllustration of treating the problem as a tiwvarying problem, where theegewindows used to
train a model and test new da#tat slideforwardthrough time (the blue arrows)

1.2 Feature -Based Methods

In contrast to predictichased method$eaturebased methodsy to directly extract featurdhat are
small during normabperationsand larger during anomalie&n example is using principal component
analysis (PCA)Section2.1), which breakslatainto orthogonal directionsrdered by how much variance
in the dateeach directiorexplairs. The components that explain the least variance are often described
primarily by noise and will be small during maal operations and large during anomalous operations
[12].

Featurebased methods in the literatdoe extending to the transient problafien take a transfer
learning approactOne method has used the more abundant source data to train an encoder that maps the
sensor measurements into a feature spgca@fien to transfer the knowledge, that same encoder is
transferred to the target dateherethe resulting source data features are used to detect anomalies. One
challenge to using this approach for sensor data is that it assumes that the felhtagy wver from the
source dataset to the target dataset. Prior work using this idea has often focused on image data, where
features can represent general patterns present in many kinds of images.

This effort implemented one featdbased approach extend featurdbased anomaly detection
methods to solve the transient probléue to thedrawbackf directly transferring features from source
to target datathis efforthasinsteaddeveloped and implemented a niaturebased approacihis new
apprach called the combined null space apprqaciculates the dominant featurée.(those that are
constantly varying and consequentipuld not make good anomaly detection featyrées both full
power andransientdata separately, combines them toraot thedominantsystemfeatures, and then
finds the null space featurase(, those that should lsenallduring normal operationdut can be used to
detect anomaliggor anomaly detectio(Section4.3.2. These approaches make use of the PCA
algorithmasdetailed in Sectio.1



Like the predictiofbased methodshis effortalsoimplemenedbaseline featurbased methods
which aresimilar in concept to the predictidrmased baseline approa@ection4.3.1).

To evaluate methods in a controlled environmtnis,effort created and usesynthetic data
generators (Sectidd). These data generators were based on spraggdamper (SMD) systems
commonly found in mechanical engineering referenths.full and transient power conditiongre
translated to the SMD simulatby having ample data for an SMD system with one mass held fixed, but
the rest of the masses can ,heeecaledthe maseloperating mode nf ul |
and limited data for the same system butwithalmas ses al |l owed to move freel
condition here called the transient operating njode results from the methods applied to these
datasets can be found in the respective section for each method covered in this reporth®uitra
methods exploratiorthe methods were extremely sensitive to nonlinearity. To make this assessment
broadeythe nonlinearity of the datsasquantified(Section3.1), and the methods were tested on data of
varying nonlinearity(Sectior4).



2. ANOMALY DETECTION METHODS

This effort makes a distinction between general anomabctieh methods and those that focus on
the transient problem. This section discusses the geanethbdsand how they are used for anomaly
detection. They are separated to emphasize the changes made to address the transient problem. In
addition, several dhe transienspecific methods are agnostic to the anomaly detection method used.

2.1 Principal Component Analysis

PCA is a popular algorithm that can separate data into orthogonal dirdddhn®ne of its most
common uses is for dimensionality reduction, where it attempts to compresdithigiisional data while
incurring minimal information loss. Traditional PCA, howevemiidy efficient when process variables
are nearly timendependent. Taapture the autocorrelations that occur through time, the traditional PCA
algorithm was modified to creatlynamicPCA (DPCA)[14]. In anomaly detectiomethods, BA and
DPCA models are used &xtract anomaly detection features.

This effort uses a DPCA model to capture the correlations between variables. To create this model,
time-series data (vectors) are stacked to form a data matrix. Next, singular value datomigoused to
decompose the data matrix into feate. Note that this decomposition is a linear proces#, can
only extract linear patterns from dathile the decomposition procedses not necessarily implige
linear patterns arstatisticaly independet) they can be treated as independent for many practical
applications. Therefore, the decomposition permits one to view each pattern individurddgd by their
significance in the data.

Time-series data can be modeled as a sequence of measurementaectyrs, eachconsisting of

& sensor measurements at sample times pltf8 FE , wheret is the number of time steps in the data.
In traditional PCA, the data samples would be stacked to create a large data matrix:

@

@ é h

@
where®@nN Y (i.e.,dis ané¢ & matrix of real numbershnd denotes the transpose operator
Usingthis matrix, each data point can only capture correlations between variables in the same sample
time. However, in dynamic processes, measurement samples magntaanecorrelation (i.e.,
dependence on information contained in previous sample times). ikibally, this could mean an
autoregressive system with oOw 0w E 6 w foran-order dynamic system, where
the 0 terms are coefficient matrices.

To capture this autocorrelation, DPCA usegmented data sample @ 8 w ,each
representing a window of data that inclutéesh the measurement vector for that sample time and the
measurement vectors for a fixed number of previous sample. fithese samples are thetacked to
form an augmented data matrix:

@ E W a
@ é E € € h
W E ® a
where®N 'Y is the augmented data matrixis thewindow sizeof the augmented data sample

the rowscontaintheaugmented data samples each containing data for a given window, and the columns
contain the data for each variablg different time stepsBy incorporating multiple time steps within a
window, the augmented data matrix can seek patterns both withsathe time step and across
neighboring time steps.



Once the augmented data matrix is credtamn be used with the standard PCA algorithm. This
meanst can be decomposed as a product of three matrices, namely the orthonormal¥mnatrix
6 6 86 ,apositive semidefinite diagonal mati¥vith elements, h, 8 h,  along the main
diagonal, and an orthonormal right singular madsix 0 0 8 0

o Y% 6,0Nh

wherethe left singular vectors are denoteddy' 'Y , the right singular vectors by ¥ 'Y , and
the singular values hy N Y.

This decomposition can be used to genera@apressed approximation of the input data that
captures rast of the informationi the Frobenius norraensesst s ). Since the vectors are ordered by
magnitude of the singular valu@shich represent thie respective explained variandea rankQ @ i
approximation of the input data~y 'Y can becalculated. This approximatiag obtained by
projecting the data matrix on the fifeft singularvectors(whereQis often called the latent size)

) 6,0 8

Building a rankQ & i DPCA model that captures most of the feature variance at a giverstépeés

given by the firstQleft singular vectorso . Intuitively, this yields the tofQpatterns in the data that
explain most of the trends and correlations observed between the measurement samples adross time.
discarded left singular vectors are considered uninformative aacktypically assumed to be
statistical noisén the time series.

A key observation in the present work is thvahile the discarded left singular vectots are
uninformative when the samples are closely approximated HYRIGA model, this may not necessarily
be the case when a sam@eutof distribution(i.e., it cannot be approximated by the mddil other
words,an erroflike term carbe calculatedusing the discarded feature(s) amhsolidatednto a single
metric using theiEuclidian norm(or anotherappropriate norm):

Q 64 8

Nonlinear problems may require kernel PCA where the data are projected to admggesional
spaceusing nonlinear functions (also called kernels). In this space, the nonlinearly projected patterns are
assumed to be linearly sephleaito enable the above analysis.

2.2 Linear Leave -One-Variable -Out Model

Onechallenge in implementing the DPCA methodhisselecton of the latent sizeAn alternative to
the DPCA modeis the LOVO model(developed as part of a prieffort [4]), which predicts each
variable using regression, with all other variables serving as model.ifijmiganethod does not
compress the data, rendering the question of latent size moot.

As in the previous method, the augmented data sampés used. However, rather than
concatenating all the data into a single matrix, they are separated into input and output matriises. This
done for each variable, in rotation. Then a traditional regression approach can badiaigghe input
matrices to predict the output matrices. AW the m
one variable from the input data, theses regression to predichtteft-out variable The input data
includeall thed -capturedime steps in the windawFor the output data, only the center sample time is
used (meaning the window size for this method should be odd). This approach w$inglyhe center



point was selected because some variables cause future changes in other variables. For example, in a
NPP, turningon a heatewill eventually affect the temperature but vd@parkalmost no immediate

change. As such, if the model is tigito predict the heater power, it would likely be more accurate if it
had access to both past and future temperature values within the window.

The input and output matrices are defined for each vari@blthe vector . The matrix definitions
are smplified using the notation®p andw , which represent variabl&®f w and all variables i
except for variabléQrespectively. Note that when used with;;, this means that all instances (in the
window) of variabléare removed. Then the input and output matrices for var@bke defined as:

(bﬁ I?wﬁ (0 B
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where® is the input matrix¢ is the output matrix) 1 O 11, wheretheTtterms inbare zero
matrices with a number of columns equatte, andv is row ®f 0. In the matrix), the"Qn the center is

used to select just the center sample time in the window, antisavsed to select only variabif that

center sample time. Using these matrices, each rawisfthe input information used to predict each row
of ®.

Once thanput and output matrices are created, they can be used to train a linear regression model for
each variabl&QThe regression model is of the following form:

VOHU 6  Oh

whered N Y andd N Y. The unknown coefficients werelged for by minimizing an objective
function that included both the mean squared prediction error and elastic net regularization. Elastic net
regularization places a penalty on large coefficients to prevent overfitting the model to tHéldata [

Once all thendividual variablemodels are solved fothey can be combined into a single LOVO
model Using matrix algebra, all these models for individeaiables can be combined into a single
model:

wH 6a  6h
m E ©
whereo € E é vy is formed by stacking the terms, withi zeros padded per row to
6 E m ]
0
ensure that variabl@s not included in that row, arii € N'Y s formed ly stacking thed
o]

terms.

For anomaly detection, thsystemmodek can be used to generate an anomaly score, which is a scalar
value that quantifies the degree to which the augmented data are abnormal. When the score exceeds a
certainthreshold, the samplis considered anomalous.

To calculate th@nomalyscore, the prediction err@? (often called residual) is first calculated as the
difference between the measured and estimated values

Q o a8
Then the scorée is calculated as the weighted sum of the squared error:
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wheret is a diagonal matrix containing the estimated variances of the error vector that normalizes the
error statistics.

2.3 Nonlinear Leave -One-Variable -Out Model

In the linear LOVO approach, the data were split into an input and aldapagefor each variablé&
to traina linear regression models. The individual models were then combined into a single model. This
idea of training multiple models and combinimgn worked for linear models because they have low
computational overhead and are fast to train. However, this would be much more computationally
intensive usingx artificial neural networksANNS).

By utilizing the flexibility of ANN models, this step wde simplifiedto use a single model that
accomplishes the same goal. As such, an Al created following the input/output structure:

WH "Qa h
where"Qt is the ANN function. The general architecture used in this effort is shofigume5. In this
figure, the input datareshown as ghreedimensionaar r ay, wi th the first di men

a placeholder for the number of windows) being a derivatiteefythonprogramming languagesed

here to imply that one or more windows can be transformed by the function in a single function call. The
second dimension (equal to the window size) and third dimension (equal to the number of variables) are
used for implementatiopurposes but could have been flattened and combimgding through the

ANN, the data are first split inth branches and flattened, with each branch omitting information from
variable’QConceptually, each of these branches can be considered issNdWwwith anonlinear
transformatioiQt . Each branch contains a nonlinear layer (in this effort, a densely connected layer with
arectified linear unifcommonly calledReLU] activation, though other ANN componeitsdtypes

could have been used) andreebr densely connected layer to reduce the dimensionality. Athe

functions are concatenated together to create thédfdlin practice, this strategy of treating it as one

model makes it more efficierithen, anomaly scores are calculatednndentical manner to the linear

LOVO model.

2.4 Autoencoder Model

Autoencoders]6] are a generalized nonlinear versiorP@A deployed using a neural network
architecture consisting of two netwo&sn encode©t and a decodé® t . Given sampled , the
encoder network encodes the dataintoadlowme nsi onal space through a [ in
yieldingag O a . Effectively, while PCA finds a lowdimensional linear transformation of the input
data, autoencoders find a ladimensional linear transformation of nonlinear projections of the data. The
differentiating feature of autoencoders from kernel PCA is tleeddtoencodekernel, characterizing the
high-dimensional projection, is not specified by the ubet is rathelearnedusing a neural networtkhat
is continually trained on examples input by the user

The decoder network performs the reverse operatiynsnding a nonlinear projection of the
embedding and finding a linear transformation of the data givéilbyO &4 . When combined, the
objective of the neural network is to tune its weights and find encoder and decoder transformations that
minimizethe squared error loss. For tirseries data, the kernel and bottleneck dimension may be treated
as hyperparameters to be tuned on a validation set not part of the neural network training until the
validation loss is minimizedimilar o the LOVO predidbn models, the error can then be used to detect
anomalies.

The decodecan alsde deployed as a generative model with an understanding of the statistical
variations of the lowdimensional representatiomhis is exploited in variational autoencoders veher
additional constraints are imposed on the bottleneck,layeh as having a multivariate Gaussian



distribution, which allows the engser to generate Gaussian random numbers to generate a variety of
samples using the trained decoder as a generatived.mlmdsuch architectures are explored in this work.
The overall autoencoder architecture, inclusive of the encoder and decoder, is depiigectb
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Figure5. General ANN structure of the nonlinear LOVO model.
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Figure6. General ANN structure of the autoencoder model.
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3. SYNTHETIC DATA

As previously mentionedhis work useaynthetic data generators basedSMD systemdue to the
usedmet hodds sensi tthiywasquantified. nonl i neari ty,

3.1 Nonlinearity Quantification

This researclanticipatedhatextending anomaly detection methods to transient condisansre
difficult for nonlinear systems than for linear systeifiserefore this effortresearched nonlinearity
measure for use with anomaly detection applicatiéids For themeasure described in this sectitme
relative scales of the variables matter. Without loss of geneliaigyassumd that all variables have
been normalized to have zero mean and unit variance.

This effort started with a nonlinearitgeasure found in the literature tlgaiantified nonlinearity in
functions™Qof the formw "Qw , wherewandwcan both be vecteralued functionsThegeneraideais
thatthe nonlinearity measure should quantify the distance bet@aerand its tosest linear
approximatiorD in the set of all linear functiorfs[17]. This amounts to findinthelinear functiond that
reducethis measure

0 El mA e Qbah
where inf is the infimum operatg¢similar toa minimizationoperatoy, Ois theexpected valueandsst ss
is the 2norm squaredThis measure can be normalized so that functions on different scales can be
compared evenly. Tlrenormalized nonlinearity measure is defined as:

5
:‘8

O AQw &
Intuitively, when0 @ explains none of the data (i.e., whemo 1), this normalized measure goes to
one. When ifully explains the daté.e.,0 @ "Qw), it goes to zero. As such, this measure falls

between zero and one. Without the inf function, this could exceed otherasre linear functions that
would increase the numerator; however, the inf function prevents this from occurring.

Considering this measure further, it can identifp different phenomena as nonlinearitiastual
nonlinear patterns between the datadnoise, which cannot be explained by a linear mo&iglsuch,
there could be a true linear functiw with sufficient noise that it provides a nonlinearity measure
close to one. This is a reasonatdsult as with so much noise, itilmpossible ® determine whether
therecould be small nonlinedunctions superimposed within the noise.

To demonstrate the original method, the nonlinearity measurerfte simple examplesere
calculatedThe examples includie equatiosw @ | @ 0 (Figure7),® @ | ® 0
(Figure8), andw @ | UO(Figure9), wherewis a uniform random variablé, is Gaussian noisand|
is a multiplier that increases throughout the subplots.

For anomaly detection, there were two limitations whiils nonlinearity measure as proposed. First,
in anomaly detection, there is no inherent input/output data but rather simply a set of data that can be used
to detect anomalies. To overcome this limitation, the LOVO framework is employed to calculate the
linear model, with "Qw replaced withua

O&0 "Ow (’j,CEr1
O AYE '

whereb and0 are calculated using the LOVO approach.
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Figure7. Nonlinearity measure for a secenter polynomial with increasingonlinearity.
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Figure8. Nonlinearity measure for a thiakder polynomial with increasing nonlinearity.



M =0.003 M =0.014 M = 0.055

M =0.213 M=0.661 M = 0.955

Figure9. Nonlinearity measure for a firstrder polynomial (line) with increasing noise.

The secondimnitation is thatin generalthe generative function (i.€Qt ) is unknownand only
sample data are known. In the original methbd,[it was proposed thator complicated nonlinearities,
the measure could be calculatagmerically. In this effort, this is the natural chobmcause there are
data and not functionsuchthatthe expected values can be replaced by sums:

B 0 Own 0o 0 Ow o
! — 8
B oww

In summary, his metric carempiricallymeasure nonlinearity fonultivariateanomaly detectiodata
with a result thatanges from zero to one. It is algorth noting that this can be done for each variable in
w(or wif using the original formula), which can add insight.

An example is shown iRigure10, wherew andw are uniform random variables acd @
p ™ and no noise is added. From thesets w andw have some linearity (although el not linear),
andw is highly nonlinear. As a result, the combined nonlinearity measure shows thaystem of
equations is highly nonlinear.
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Figure10. Nonlinearity measure in the LOVO framework.

3.2 Spring -Mass-Damper Data

The simulator used the idea of the SMD system, commonly seen in mechanical engineering
references. The badilding blocks of this system are springs, masses, dampers, sensors, and actuators:
the masses respond to forces, the springs apply restorative forces to the mass, the dampers apply damping
forces to the mass, the sensors measure the position of theandtbe actuators apply forces directly to
themass This simulator was used in previous efforts, and additional details on equations of motion and
differential equationare provided byarber et alf3]. Amongits key features are its abilities to:

1 Emulate both linear and nonlinear differential equations

1 Simulate SMD components in different configurations, quantities, and layouts
1 Incorporate process amgeasurement noise to make more realistic data

1 Inject multiple types of anomalies.

The SMD system was selected for this resetockeveral reasong§irst, though it is conceptually
simpleand featurefust a few basic components, those components caonbeirced to generate
high-order systems with coupled variables. Second, the system is easily scalable to include many sensors
and actuators. These two characteristics are important for emulating thedalghigh-order systems in
NPPs. Third, the systeailows fora straightforward incorporation of sensor anomalies (by directly
modifying sensor measurements) and process anomalies (by modifying system padahezterthe
spring stiffness and damping coefficients).

Theobjectiveof this effort isto exterd anomaly detection methods to transient conditibhss
problem was translated to the SMibnulatorashavingampledatafor an SMD systemvith one mass
heldfixed,but t he rest of the masses ¢ agherecaledteedsetr eel y
operating modg andlimited datafor the same system but with all masses allowed to move freely (the
Atransi en hete caled the trabsierd operating mode

The SMD configuration used in this effort (degurell) had four masses (labeled with m)
connected in series, with the two end masses also connected to fixed reference points (commonly called
grounds) Position sensorflabeled with s) were placed on each masslactuators that applied forces
(labeled with f) were placed on each massept the last ond@his last actuator was omitted to emulate
only having one variable change when going flmaseto transienmodes However, while only one
variable changes, the dynamics change, which consequently affects the entire system.
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Figurell. Sketch of the thremmass SMD system (without m1 grounded).

Within this configuration, both linear and nonlinsamulations were run. Here, linearity refers to the
spring and damper componeritse linear simulations usdidear spring and damper components,
meaning that their forces were linearly proportional to their relative displacements and velocities,
respectrely, and the nonlinear simulations used nonlinear spring compomeedsinghat their
respective forces were a nonlinear function (#order polynomial) of their relative displacemeriisr
the nonlinear simulations, multiple values of the nonlingaviére assessed studywhether the
Afamount 6 of nonl i nerhervaldesofthefnbnbnearitg rdeasdusedare sheveninl t s .
Tablel.

Tablel. Summary of the SMDlatasets.

Number Name Nonlinearity!
1 Linear 0.02
2 0.05nonlinear 0.05
3 0.1nonlinear 0.1

For each nonlinearity measure, five datasets were generategttoe the natural stochasticity of the
SMD simulator Each dataset representBalyear®worth of the data, where the first year waesse mode
training data, the second year was trangsieodetraining data, and the la8tyears were transientode
testing dataThe methods were only tested on transieatledata as this was the focus of the effort.
Examples of théase andransientmodedata are shown iRigure12. These two examples are both of
normal(i.e., noranomalouspperations, so their differences are not indicative of an anomaly.

When assessing the studied methods applied to these datasgtsahquestion is how much
transient data should be used in conjunction wittbds® modelata to train the anomaly detectBather
than attempt to select a ratio or quantity, this effort turned this question into part of the experiment. As
such, thadetection algorithms were allowed to use alllthee modéraining data and an incremant
amount of transient training data until the last detector trained was allowed to use all the transient training
data. Results are shown as a function of this pasme
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Figurel2. Example data from thiease(left) and transient (right)peratingconditions, where the primary
difference is in whether th@massm3is allowed to vary.
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4. EXTENDING DETECTION METHODS TO TRANSIENTS

This section describes the dewpéd predictiorbased (Sectiod.2) and featurdased (Section.3)
methodsFor each of these two categories, there are baselingaasientspecific methodsin addition,
to report thaesults for themethods in a consistent and succinct wiaig work usec common set of
assessment metri¢Section 4.1).

4.1 Assessment Metrics

Assessmentetrics are a number or set of numbers that describe the performance of some algorithm
and can be used to compare meththis effort, the assessment mesimuldmeasureanomaly
detection performanc&ecauseahere were multiple datasets, methods, and amounts of transient data used
in the training datat wasbeneficialto come up with a single number that summatibe detection
performance for eaotf theseexperimend.

Many anomaly detection methods catsif two partsascoring algorithm that assigns an anomalous
score to a data sample and a classifier that classifies the data as either normal or abasedows the
score(e.g.,scores above some threshold eesssified asnomalous, whereas scotedoware classified
as normal)Because the scoring algorithm is inherent in the classifier, the classifier performance can be
used to assess the detection methaAdssuch, this section uses the following conventions from the
classificationalgorithms positive (P), predicted positive (PP), true positive (TP), false positive (FP),
negative (N), predicted negative (PN), true negative (TN), and false negative (FN). tfameseries
sample is classified as positive if it is anomalous and negative ifdtrisal.

In selecting an assessment metric, it needed to be independentfattwove the ratio of normal to
anomalous datand the threshold used to classify whether data are normal or anonsoting with
the first factor, @ommonclassificationassessment metric is accuracy, define@&sTN)/(P+N). The
challenge with this metric is th&ir exampleif the dataconsist of 99 negative samples arid positive
sample i(.e., 99% normal) aclassifierthat predictall data as normal would give an accuracy of 99%
However, thiclassifieris obviouslynot useful when it is important to detect the anomalies within the
data.

To overcome this first factpthis effort used precision and recall rather than accuRregision and
recall are defined as TP/(TP+FP) and TP/(TP+k&gpectivelyand are commonly used to report metrics
for imbalanced classificatiofReturning to the example above, the precision would be undefined, and the
recall would be 0%clearly showinghat theclassifieris not working well.The above exampl&Example
1) along with a secondassifier(Example 2that labels everything as positimeeshown inTable2.

Table2. Accuracy, precision, and recall two classifiers for an imbalanced dataset.

Example PP PN TP TN FP FN  Accuracy Precision Recall
1 0 1,000 0 990 0 10 0.99 Undefined 0
2 1,000 0 10 0 990 0 0.01 0.01 1

Moving to thesecond factor, sing the examples frofiable2, Example lis equivalent tselectinga
threshold above the maximum scdire., naivelyclassifying everything as noat), andExample 24s
equivalent teselectinga threshold below the minimum scdre., naively classifying everything as
anomalous)In both exampleghe scoring algorithm is completely ignorey theclassifiers.This shows
thatprecision andecallare very sensitive tthe methodisedto select the threshold.uting actual
detection problems, a threshold needs to be selected, but this is less important when comparing methods
against each other.

To overcome this second factor, a metric callexhrea under the curve (AU@)as used
Parameterized byaryingthreshold valug precision and recall can be plotted against each other to show
the tradeoff between thermhen, the AUC metric calculates the area under this ctimeeeby removing
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the threshold from the calculation entirelyhe ideaperformancas precision and recall both equal to
one An exampleprecisionrecallcurve is shown ifrigure13 with anAUC of 0.83.Based on these
factors, the precisierecall AUC(PR-AUC) metric was used to compare different detection approaches.
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0.5 7

0.4 1

0.3

0.2 9 — Classifier (AUC=0.83)

0.0 0.2 0.4 0.6 0.8 1.0
Recall

Figurel13. Example precisiomecall curvewith AUC calculated.

In this effort, theanomalies are inserted as ramp functions, meaning the effects of the anomalies
(called anomaly magnitude) start at zero, and slowly increase to their maximumAeffeath, in the
beginning of every anomaly, the magnitude is so smallttleadnomaly ismpossible to detectn other
words, it is not expected that any detection algorithm will achievedjmticision and recall close to one.
This approach was taken becaitsmulatesanomalies omany differentmagnitudesproviding more
opportunities talistinguish between theetter and worsalgorithms (assuming better algorithms will
detect anomalies earlier in the ramp function).

4.2 Prediction -Based Methods

The predictiorbased methods include the basemethodgSection4.2.1), thecovariate shift
method(Section4.2.2), themultiple malels methoqSection4.2.3, and the frozen layers method
(Sectiond.2.4. The baseline, covariate shift, and multiple models methods each used the LOVO
prediction mode(Section2.2and2.3), and the frozen layers method used the autoencoder model (Section
2.4). The results of each of these timedsapplied to the SMD datasedsepresented and comparid
Sectiond.2.5

421 Baseline Methods

This effort implemented two baseline approaches, where baselinenpdies that the prediction
models were used without regard to the transient probteather words, these methods have access to
the full power training data anghrt of thetransient pwer data and simply traprediction modelso be
appliedto the transient power tésgy datg usingthereconstruction error to calculate anomaly scores and
thenAUC values.The first baseline approach udmath the available full power and transient powata
This approach enable evaluationof how much the methods below impact detection performance. The
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second baseline approaabed only the available transient power gatdenabled an evaluatiarf
whether the methods were ableransfer knowldge from the full power data to the transient problem.

4272 Covariate Shift

As mentioned previously, the covariate shift problem assumesishehift in the data distribution
from the training data to the testing ddistribution This assumptioiis valid, as the training data is
predominantly full power data, but the testing data is exclusively transient power data

The solutiortaken herés to synthetically alter the training distribution to get it closer to the desired
distribution This effortachieves this solutiothrough weighting the data samples, often called
importance weighig [5]. Changing the weights from the default uniform disition effectively changes
the training distribution

Calculatng importance weightaeedswo pieces of informatiorfirst, thetraining distribution is
needed. When thidistribution is urvailable, it can bestimatedrom the dataising kernel density
estimation(KDE) [18], which isa nonparametric technique for estimating probability density functions
over a set of variables

n o s UV w wh
whereU t is a kernel smoothing functidhat smooths the data distributias a function o& user
selectecbandwidth An example oKDE applied to a data distribution withe Gaussian kernel atitree
different bandwidths is shown Figure14. In this example, the bandwidth of 0.01 is noisy, suggesting it
is too small, the bandwidths of 1 ande8luce the peaks, suggesting they may be too large, and the
bandwidth of 0.1 seesrto capture the distribution but with less ndfsgnthe bandwidth of 0.01
suggesting imaybe the most appropriate here. This process becomes more challenging in higher
dimensionslin this effort, the Gaussian kernel smoothing function was usedharzahdwidth was
selectedusindc ot t 6 s r,whichis @duggéestedibarimwidth based oniteeds the datathe

number of variables, artie scale of the datfl9].

—— Bandwidth=0.01
Bandwidth=0.1

—— Bandwidth=1

—— Bandwidth=3

Density

Value

Figure14. lllustration of KDE with three different bandwidths.
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The second piece of information needed istésting data distributioin general, this distribution is
unknown, and therare very limited data with which to produce this estimate. As such, this effort
assumd that allpower levels and variables are equally likely; in other words, the testing distribution is
uniform. This ensures that the model does not bias any power level over another.

Given these two distributions, the importance weights can be calculdtgld as
; W .
6o S h
n W
wheren andn  are the training and testing distributiofitis can be simplified further because

n is a uniform distribution, which has constant likelihpadd because the weights are normalized
within regression algorithms, so only relative values matter

0w 0 —P
n w

The result of thigprocedurds a set of importance weights foetlatathat are applied to each sample
error duringtraining An examplgrom one of the SMD dataseatsshown inFigure15, where the top plot
shows the sensor datmd the bottom plathows the importance weighta this example, the transient
operatingdatamake up justhe last 1% of the timeeries data but account fak% of the total weight of
the dataand each data sampethe transient data is weighted averageb.8times more thaeach data
samplein thebase operatindata.Here, the weightarecalculated for andpplied to the entire
measurement vector at each time stdagpopposed to individual sensors).
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Figurel5. ExampleSMD data with corresponding sample importance weights

4.2.3  Multiple Models

In this approach, the idésito calculateseparateontributions to an overall model frottne full and
transient power condition3 his isaccomplishedby using the full power data toain a corresponding
modelthat extracts the full power contributions (i#e correlations of variables excluding the power
andusing the transient power data to traicorrespondingnodel that extracts the transient pw
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contributions (i.e.the correlations just from powafter removing the full power pariThefinal anomaly
detection model is the combination of the two modEés approach will be described in the context of
the LOVO frameworkalthoughit can be gneralized to other prediction models. In the LOVO
framework, modelsakethe formw ™Qw.

The data are separated into full power and transient powetdatad® , respectivelyBecause the
full power data contain no transientisey areequivalent to the full power contribution daba &
(where’ indicates contribution datandare used to traithe correspondingontributionmodel:

® 0 oh
whered is the full powercontributionmodel| andw is thefull power contribution estimate.

The full power contributiomodelis thenused tocalculate the transient power contribution
subtracting the full power contributie@stimaterom the transient pogr data

® o 0 h
wherew is the transient power contributiofhis transformation is only applied to transient power data.
Applylng this transformation to the transient power datailts in the transient power contribution data
@ & 0 & .When this transformation is applied to full power d#ta,result is a zermean
residual sequendbecause full power data only contains full power contributidfigally, the trangnt

power contribution data are usg@dong with a modification, described belotw)train the corresponding
contribution model

w 0 ®h
wherel s the transient power full modélhe required modification is thdtecause the full power
contribution data has been mapped to a zeran processhe transient power contributionodelmust
also magull power tozero.For linear models, this done bysetting the yintercept equal to zero.
Nonlinear modelgincluding the nonlinear LOVO model) in geraldo not have an equivalecdnstraint.

To get around this problem for nonlinear mogd#ie origin can be added to transient power contribution
data with a higlsample weight to ensure it passes through (or close to) the origin.

With these two contribution models defined, the fatidel can be defined as the sum of the two
estimates:

w0 o 0 o0 o 0 ws8
This entire process &pplied to SMD data and shown inFigurel16. In Figure16 (a)i (d), the first
year (1970) ivase operatindata, and the second year (1971) is transipatatingdaa. In this Figure,
thebase operatingontribution estimateg) are roughly equab the raw data (dpr thebase operating
data(i.e., left half) but very inaccurate for transieoperatingdata(i.e., right half) and the transient
operatingcontributionestimatesre zero mean for tHease operatingata and nonzero for the transient

operatingdata.The error plo{d) is the difference between the raw d@pand the combination of base
and transient contributioestimategb and c)
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Figurel16. Exampleshowingthe data during the different steps of theltiple models approach.

4.2.4  Frozen Layers

Transfer learning with neural network architectyiasluding the autoencodeg performed by
training the network othe more abundant source dataset (here, full power, fi@ezing the weights of
the initial layers of the neural networkndfine-tuningsubsequent layers to teparser target dataset
(here, transient power datdhis avoids having to train a neural network from scratch on the sparse target
data only, while also providing it the flexibility to firene the weights in the final few layers to the
target dataset.

Expanding on thisthe autoencodés initially trained on thed data,after whichthe learning rates of
the initial layer(s) consisting of the kernel projection and potentially subsequent layers are set to zero
(Afreezingo). The r e+ouaedtih@& gdatawSBincaytietiniial lgrdienensidnal n - f i

ne

projection is identical, identifying the features

the neural network after the frozen layer(g)this effort,just the encoder was frozen, as shown in
Figurel7. This limited section wakozenbecause this represents titejection from the nonlinear input
data to a highedimensional space on which the features become linear (i.e., thegamstormation to
the latent space is linear). As such, this seemed an appropriate place to freeze the network.
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